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SUMMARY 

A new algorithm based on spectral element discretizations and flux-corrected transport (FCT) ideas is 
developed for the solution of discontinuous hyperbolic problems. A conservative formulation is proposed, 
based on cell averaging and reconstruction procedures, that employs a staggered grid of Gauss-Chebgshev 
and Gauss-Lobatto-Chebyshev discretizations. In addition, high-order time-differencing schemes, a flux 
limiter and a general spectral filter are employed to improve the quality of the solution. It is demonstrated 
through model problems of linear advection and examples of one-dimensional shock formation that the 
proposed algorithm leads to stable, non-oscillatory solutions of high accuracy away from discontinuities. 
Typically, spectral or spectral element methods perform very poorly in the presence of even weak discon- 
tinuities, although they produce only exponentialy small errors for smooth solutions. Spectral element-FCT 
methods can provide spectral properties (i.e. minimum dispersion and diffusion errors) as well as great 
flexibility in the discretization, since a variable number of macroelements or collocation points per element 
can be employed to accommodate both accuracy and geometric requirements. 

KEY WORDS Spectral element Flux-corrected transport Shock capturing Huperbolic discontinuous problems 

1. INTRODUCTION 

Spectral element methods are high-order weighted residual techniques for the solution of partial 
differential equations typically encountered in fluid dynamics. ' 9  Their success in the recent past 
in simulating complex flows derives from the flexibility of the method in representing accurately 
non-trivial geometries while preserving the good resolution properties of spectral  method^.^ In 
these simulations, however, both the geometry and the solution are described through smooth 
functions, so that spectral element methods can obtain exponential accuracy by fully exploiting 
that regularity. There are numerous fluid dynamics applications, however, where either very steep 
gradients or even jump discontinuities are present, e.g. interfaces in multiphase flows, flame fronts 
or shocks in compressible flows. A straightforward application of high-order numerical methods 
in these situations is not possible, since large errors induced by the discontinuity (the Gibbs 
phenomenon) in addition to the standard dispersive and aliasing errors encountered in smooth 
solutions propagate in the domain and eventually render the solution with oscillations every- 
where. 

To demonstrate the Gibbs phenomenon in the spectral element discretization, we consider 
a Chebyshev approximation of the sign function (Figures l(a)-l(c)). We see that indeed the 
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Figure 1. Spectral (Chebyshev) approximation of the sign function using N =32 modes (dashed line). Solid lines represent 
the filtered solution using the Vandevtn filter of order p :  (a) p = 3 ;  (b) p = 6 ;  (c) p =  10 

solution is inaccurate everywhere and that an increase in resolution does not improve the 
approximation. Incorporation of a high-order spectral (linear) filter developed by Vandeven4 (see 
Section 5.3, equation (28)) improves the solution away from the discontinuity so that a prespeci- 
fied accuracy is obtained according to the order of the filter, however, the solution in the 
neighbourhood of the discontinuity is still misrepresented, with the unfortunate occurrence that 
the width of the affected area increases with the filter order (Figures l(b) and l(c)). The latter is 
certainly an unwanted result in simulating phenomena where most of the physics stems from the 
discontinuous interface, as for example in the case of compressible flow in the presence of a shock 
wave. As a second example we consider the linear advection of a square wave in a periodic 
domain. In Figure 2 we plot a spectral element solution based on Chebyshev collocation after 
750000 time steps (At= There are two important features characteristic of this spectral 
element simulation: first, large-amplitude oscillations appear everywhere in the domain; secondly, 
the spectral element solution has been convected with the correct phase speed even after this very 
large number of time steps. While the second feature is indicative of the very small dispersion 
error of the method, the first feature is consistent with the argument made by Lax' that 
information is contained in these oscillations and that high-order schemes retain more informa- 
tion than low-order schemes. 
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Figure 2. Linear advection of a square wave using spectral element discretizations ( K  = 3, N =60). Periodic boundary 
conditions are imposed, while the time integration proceeds for 750000 time steps of size At= lo-’ 

One approach to successfully simulating the aforementioned complex flows is to use a non- 
linear, monotone, positivity-preserving method that will eliminate the Gibbs phenomenon and 
produce physically accepted solutions. This idea was first proposed in the seminal work of Boris 
and Book,6* ’ where an advection equation was considered as a model problem in the form 

The FCT algorithm proposed by Boris and Book consists mainly of two stages, a transport- or 
convective-diffusive stage and an antidiffusive or corrective stage. An equivalent but more 
descriptive interpretation of the FCT algorithm given later by Zalesak’ suggested that the fluxes 
to be included in equation (1) can be considered as non-linear weighted averages of fluxes that can 
be computed by two distinct discretization schemes corresponding to different properties: one of 
first order that preserves monotonicity (according to Godunov’s theorem’) and the other of high 
order that corrects the solution and dictates the accuracy. This latter observation is what 
motivated Zalesak” to incorporate a 16th-order finite difference formula and a pseudospectral 
method as high-order discretization schemes in a finite volume discretization method. More 
recently McDonald’ has also studied the pseudospectral method as part of an FCT algorithm in 
solving scalar hyperbolic equations; in particular, he demonstrated through numerical experi- 
mentation the superiority in accuracy regarding phase and group velocities as compared to finite 
difference schemes of all orders. 

Although very accurate, the FCT-pseudospectral method described in these previous works is 
limited to periodic computational domains with highly regular nodal point distribution. In the 
current work we attempt to relax these constraints by substituting for the high-order scheme 
a spectral element method.’’ ’ In the spectral element discretization the computational domain is 
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broken into several subdomains (macroelements) within which data and unknowns are repres- 
ented as spectral expansions in terms of general eigenfunctions-solutions of the singular 
Sturm-Liouville problem, i.e. Chebyshev polynomials, Legendre polynomials, etc. The discrete 
equations are derived via variational statements, so that the unknowns at each node represent 
values of the unknown field variable. This approach and its  variant^^.^^.'^ result in exponential 
(spectral-like) convergence for infinitely smooth solutions. Besides the accuracy, however, that the 
method provides, it is the flexibility in the discretization and its easy extension in multidimensions 
that make it a prime candidate in problems of compressible turbulence and complex geometry 
applications. The paper is organized as follows. In Section 2 we introduce the basic ideas upon 
which our conservative spectral element formulation is based (cell-averaging procedures). In 
Sections 3 and 4 the approximation considerations needed to construct the full combined scheme 
proposed here are put forward (reconstruction procedure). In Section 5 we briefly review the FCT 
algorithm and describe its components (low- and high-order schemes, limiter and filter). Finally, 
results are presented in Section 6,  followed by a brief discussion in Section 7. 

2. CELL AVERAGES 

In the general case that we consider in this work the nodal points are distributed in a non-uniform 
manner and thus we need to define appropriate cell-averaged quantities. In particular, adopting 
the terminology explained in Figure 3(a) the cell-averaged scalar quantity 6j is given by 

Given this definition, equation (1) can be integrated along a cell extending form i- to i+ as 

where we have also defined 
A x j ~ x i t  - x i - .  

The above equation therefore suggests that the fluxesf(4) should be evaluated at the ends of the 
cell using de-averaged (reconstructed) velocity values; this formulation leads to the conservative 
(or flux) form of the semidiscrete wave equation. 

In the following we define cell-averaged quantities for three particular discretizations: spectral 
(Fourier) discretization, spectral (Chebyshev) discretizations and spectral element (Chebyshev) 
discretizations. Proceeding with the first case, we refer to Figure 3(b), where the set of points j at 
which cell-averaged quantities are defined are simply the midpoints of the cell. Using the 
definition (2), a spectral expansion of the form 

N 

+(x)= 1 akeikX 
k = - N  

corresponds to the cell-averaged quantity 
N 

&x)= 1 &eikX, 
k =  -N 

where ak=akak and the (Dirichiet) kernel ok is given by 

sin (kAx/2) 
kAx/2 ’ 

ak = 
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with Ax = x/N. This formulation results in an identical Fourier-FCT method to that presented in 
Reference 11, where a more heuristic approach was followed in the derivation. 

A Chebyshev spectral expansion corresponds to a non-uniform distribution of points with cells 
of variable size Axj. Following the formulation of Cai et al.,14 we select the set of points j to be the 
Gauss-Chebyshev points (see Figure 3(c)) defined by 

xj=cos[(j-~)Afl], At?=n/N, l < j < N ,  (54 
while the end points i+  and i- of each cell are the Gauss-Lobatto points defined as 

xi = cos (iAO), 0 < i < N. 

cell j I 

i- j i+ 

I 

(b) 

Figure 3. (Continued) 



712 

I 

k - 1  k k t l  
- - 

B*ws-t-t-t.l 11*mlt 

I 

J. GIANNAKOUROS AND G. E. KARNIADAKIS 

Using these two sets of points and the definition (2), a Chebyshev spectral expansion of the form 
N 

4 ( x ) =  1 akTk(x) (64  
k = O  

after averaging becomes 
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where the cell-averaged Chebyshev polynomial is given by 

To = 1, 

~ l = h J l u l ( X ) ,  

T k  =* [ak uk(x) - c k  - 2 uk - 2 ( x ) ] ,  k 2 2, 
with 

sin [ (k + l)AO/2] 
(k+ l)sin(AO/2) * 

c k =  

Here we have introduced uk(x)= [l/(k+ l)] T i ,  l ( x )  to be the second kind of Chebyshev poly- 
nomials. 

In the spectral element discretization the domain is broken up into several macroelements 
(Figure 3(d)) within which the velocity is expanded in terms of Chebyshev polynomials; Co- 
continuity is imposed at the elemental boundaries. Therefore in the kth element an expansion of 
the form 

N 

defined on the Gauss-Lobatto-Chebyshev points, after the application of the averaging operator 
takes the form 

N 

where 6; are the point values for element k; hi(x) and &(x) are the Gauss-Lobatto- 
Chebyshev-Lagrangian interpolant and its corresponding cell-averaged function obtained from 

L 

&(x) = - 1 Tp(xi) Tp(x), 0 < i < N, 
N p = o ~ i ~ p  

where c, = 1 if n # 0, N and c, = 2 otherwise. In matrix form the above cell-averaging procedure 
can be written as 

@=AFi+T, O<i<N, O<j<N, (10) 
where the cell-averaging matrix is defined as AFi = h(xj); here xj refers to the local co-ordinate (see 
Section 5.2). On the basis of the nodal cell-averaged values obtained from (lo), the corresponding 
polynomial can be constructed using Lagrangian interpolation, i.e. 

N 

where the Gauss-Chebyshev-Lagrangian interpolant is given by 
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Having constructed a cell-averaging procedure for the spectral element discretization, we 
proceed next with the inverse operation of de-averaging and recovering point values for the 
evaluation of fluxes in equation (3a). 

3. RECONSTRUCTION AND POINT VALUES 

The reconstruction operation can also be put into matrix form. We consider first the polynomial 
describing the cell-averaged values, 

N 

An alternative to expression (1 lb) for the Gauss-Chebyshev-Lagrangian interpolant is 
N-1 1 

We can also express the g j (x )  in terms of the second-kind Chebyshev polynomials; to this end 
we recall that l S  

Tp(x) = t CUp(X)- up- z(x)17 P 2 2. (13a) 
Using the above equation, we can rewrite gj (x)  as 

N- 1 
g j (x )=  1 $,apUp(x), l < j < N .  

p = o  

Here we have defined 

. 1  
A;=- N TP(Xj), p=N-2,N-1, (134 

A ~ = F  [ TP(xj) - Tp + Z(xj)], 
1 

0 < p < N - 3. (1 3 4  

The interpolating polynomial corresponding to point values (Gaussxhebyshev-Lobatto 
points) can then constructed using the de-averaged Lagrangian interpolants G j  as 

The cell-averaged second-kind Chebysev polynomial is obtained using the definition of equation 
(2) (see details in Reference 14): 

U p b )  = apUp(x), (15) 
with ap obtained from equation (7d). To determine Gj(x),  therefore, consider (14), (15) and 
(12a)-(13b) and obtain 

N-1 Ai 

G ~ ( x ) =  1 2 U,(X). 
p = o  CJP 

To recover the point values ui, we simply set x = x i  in the interpolating polynomial u(x). In matrix 
form the reconstruction procedure (on an elemental level) can be written in the form 
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where 

g$= Gj(xi). 

On the basis of these N point values, the interpolating polynomial 4(x) can then be constructed 
from equation (14). This local reconstruction procedure is then repeated for all elements. To form 
a global interpolating polynomial, however, we need to impose a continuity condition at 
elemental interfaces as we explain in the next section. 

4. INTERFACIAL CONSTRAINT 

The interpolation polynomial d(x) constructed on the basis of the Gauss-Lobatto-Chebyshev 
points is of degree N (requiring N + 1 values to be determined), while we only obtain N point 
values from the reconstruction procedure (equation (1 7)). The additional information needed to 
uniquely define $(x) comes from requiring continuity of solution at the interfacial nodal points. 
For the kth element, for example, we require that the rightmost nodal value be equal to the 
leftmost nodal value of element k + 1, i.e. C # I ~  = 4; (Figure 3(d)). This can be accomplished by 
adding an extra term to the ( N  - 1)th-order polynomial as follows: 

wk N 
bk+ '(u) = C @+ Cj(r) + (1 - r )  T&(u) - 

j =  1 2 N 2  ' 

where the jump hdk is defined by 

Here the co-ordinate r refers to the local element co-ordinate and ( -  1, l )  are the end points of the 
mapped element (see Section 5.2). 

The above approach results in a formally discontinuous cell-averaged interpolating poly- 
nomial $(x) across elemental boundaries; however, the discontinuity can become spectrally small 
as the elemental resolution N increases. The implementation of Dirichlet boundary conditions is 
similar to the above imposition of the interfacial continuity constraint. 

5. FCT ALGORITHM 

To demonstrate the flux-corrected transport algorithm, we consider here the linearized form of 
equation (1) as follows: 

a+ a4 
at ax -+U-=O, 

where U represents a convective velocity for the field 4(x, t). Here we adopt the approach of 
Zalesak' in formulating an FCT algorithm where a low-order solution denoted by $id is 
computed first, followed by application of a flux-limiting procedure which leads to the final field 
@+'(x, t); here n refers to the level of time step up to which the solution is known. 

In particular, the main steps of the proposed spectral element-FCT method are as follows. 

(1) The initial condition $(x,O) is cell-averaged to obtain the field $j(0) on the Gauss- 
Chebyshev mesh. 



716 J. GIANNAKOUROS A N D  G. E. KARNIADAKIS 

At time step nAt: 

(2) Compute the transportive flux A corresponding to a low-order scheme at each 

(3) Advance (explicitly) the low-order transportive-diffusive solution to obtain 8. 
(4) Compute the transportive flux Fi corresponding to the spectral element discretization 

(5) Compute and limit the antidiffusive flux A::  

Gauss-Lobatto-Chebyshev nodal point. 

scheme; again the Gauss-Lobato-Chebyshev points are employed in the discretization. 

A; = ci(Fi-A), 0 6  ci < 1. (20) 
(6) Through reconstruction obtain de-averaged values &. 
(7) Update (explicitly) the final solution based on the limited antidiffusive fluxes, i.e. 

In the following we discuss all the above steps in more detail, with emphasis placed on the 
high-order scheme and the time-stepping procedure. 

5.1.  Low-order scheme 

The simplest low-order, positivity-preserving scheme is upwind differencing used in almost all 
previous FCT proposed methods. In our notation for the linear problem we obtain 

J+=uj@,  ujgo 

A- = ujfj$, U j < 0 .  

For the non-linear problem at elemental interfaces the appropriate sign is determined using the 
Roe speed,I6 which is an average state between boundary values of adjacent elements. The 
advancement of the low-order solution therefore proceeds as 

The transportive-diffusive field &d is computed at the Gauss-Chebyshev (j) points which are the 
midpoints (in the transformed &space) of the cells. 

5.2. High-order scheme: spectral element method 

Adams-Bashforth time-stepping scheme, i.e. 
To be consistent with the integration scheme in (21) and (23), here we use a third-order 

where 8, are appropriate weight coefficients.” The high-order flux Fi = Uir& is computed at the 
Gauss-Lobatto-Chebyshev points. A reconstruction operation is then involved to recover point 
values from the cell-averaged field $ j .  

A brief description of the spectral element has been given in Sections 2 and 3. Here we establish 
the connection between the local (elemental) reference system and the global (physical) co- 
ordinate system. For the set of Gauss-Lobatto-Chebyshev points the local co-ordinate is given 
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which is related to the global co-ordinate x through the equation 

Lk x”,x:. 
x=-).k+- 

2 2 ’  

here x i  and x i  denote the left and right co-ordinates of the elemental boundaries. The interpolant 
of 4(x) in the kth element is then represented as 

Here 4: are nodal values of 4 and hi are shape functions corresponding to element k and node i, 
with the property hi@;) = hij, where 6 ,  is the Kronecker delta symbol (equation (9a)). Expressions 
of these Lagrangian interpolants (as well as their derivatives) in terms of Chebyshev or Legendre 
polynomials can be found in Reference 15. 

5.3. Flux limiter-filter 

A key component of a successful FCT algorithm is the flux limiter employed, since it conveys 
an appropriate amount of dissipation from the low- to high-order scheme so that monotonicity is 
preserved and undesirable overshoots are avoided. Experimentation with the proposed limiters in 
References 6, 8 and 11 reveals some noticeable differences. Here we have chosen to use a simple 
limiter based on the original ideas of Boris and Book6 and the extensions presented in Reference 
11. A modification introduced here is the incorporation of a variable cell size A x j .  A complete 
description of our limiter is as follows: 

s1 =sign(A,+), s2 = sign( @+ - @), s3=3(s1+s2), 

a, =sl(&!+2-@+l)Axj, a2 = s1 (ed - @!! l)Axj, 

a3=s l  max[O,min[s,Ai+A.t, a l ,  az]], A:+ = a,/At. (27) 

The filter used in some of the computations is a pth-order filter developed by Vandeven4 and 
given by 

( 2 p -  l)! 
[t(l -t)]”‘dt. 

C(P-1)!I2 s 0 
cTp(x) = 1 - 

While this filter is very similar to the classical raised cosine and sharpened raised cosine for 
p = 3 and 8 respectively, it has been shown in Reference 4 that a prespecified accuracy (controlled 
directly by the filter order p) can be recovered away from the discontinuity. 

6. NUMERICAL EXPERIMENTS 

The Vandeven filter has been very effective in recovering spectral-type accuracy for several test 
cases we have tested in approximating discontinuous functions; however, its use in the discretiz- 
ation of the time-dependent equation (1) gives no improvement at all. To demonstrate this, we 
plot in Figure 4 the results of a spectral element (collocation) simulation of a square wave linearly 
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advected to the right for various values of the filter order p .  The filter is applied here at selected 
time intervals: at the last time step (Figure 4(b)), every time step (Figure 4(c)) and every 100 time 
steps (Figure 4(d)). For comparison we also plot the unfiltered solution in Figure 4(a). The results 
are qualitatively different: in the second case the wave-form is 'smoothed' globally, i.e. deformed 
essentially, in the other cases major errors are confined around the discontinuities and the 
boundary points. 

6.1. Linear advection 

In the following we present results based on the spectral element-FCT algorithm proposed in 
the previous section. First we simulate the linear advection of a square wave in the periodic 
interval XECO, lo]. The wave is located initially between x=4.0 and 6.0; after 12000 time steps it 
has moved to a new location between x = 6.0 and 8.0. In Figure 5 we plot the solution for various 
discretizations: in Figure 5(a) we plot the solution of a Fourier-FCT simulation, in Figure 5(b) the 
solution of a Chebyshev spectral-FCT discretization (corresponding to a single spectral element) 
and in Figure 5(c) the solution of a spectral element-FCT discretization corresponding to K = 2. 
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Figure 5. Linear advection of a square wave. The solution is obtained using various FCT schemes: (a) Fourier-FCT; 
(b) Chebyshev-FCT; (c) spectral element-FCT for K = 2  elements. The total number of nodes is 128 for all simulations, 
while the solution is plotted after 12000 time steps (At= In (d) we plot the corresponding solution obtained using 

a second-order finite difference scheme 

Finally, in order to compare the new algorithm with low-order schemes, we plot in Figure 5(d) the 
solution of a (second-order) finite difference-FCT discretization similar to the one presented in 
Reference 10. All other simulation parameters are identical for all schemes, including the type of 
limiter applied and the time step used. From these results it is seen that the spectral-FCT 
formulation presented in Sections 2 and 3 produces solutions free of oscillations. In addition, the 
accuracy of the solution is improved dramatically as compared to the finite difference-FCT 
simulation; the multidomain solution is also comparable to the solution obtained with the 
Fourier-FCT code. 

In the next experiment we compare the linear advection of a combined square wave-semicircle 
wave-form at different time instances and for similar discretizations as in Figure 5. This problem 
has also been studied in previous related worklo*" and serves as a test for the flux limiter. In 
particular, here the effect of non-uniform point distribution becomes especially important, since 
no attempt was made to correct the limiter for such discretizations. Typically, a strong limiter 
creates a large number of terraces for smoothly varying functions. Initially, the leftmost point of 
the combined wave-form is located at x = 05; the solution is obtained in the periodic domain 
XE[O, lo]. In Figure 6 we plot the solution after 12000 time steps for (a) Fourier, (b) K =  1 and 
(c) K = 2 spectral elements. These results should be compared with the solution obtained using 
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Figure 6. Linear advection of a combined square wave-semicricle. The solution is obtained using various FCT schemes: 
(a) Fourier-FCT; (b) Chebyshev-FCT; (c) spectral element-FCT for K = 2 elements. The total number of nodes is 128 for 
all simulations, while the solution is plotted after 12000 time steps (A t=  In (d) we plot the corresponding solution 

obtained using a second-order finite difference scheme 

a second-order finite difference-FCT scheme shown in Figure 6(d). The new feature in this 
solution is the pronounced terracing effect on the semicircle of the finite difference solution; this 
effect is less obvious in the spectral solution. 

To further investigate the effect of the high-order scheme in creating terraces, we repeat the 
calculation with the high-order flux computed through an eighth-order formula." In Figures 7(a) 
and 7(b) we plot the solution obtained after 12000 time steps using a leapfrog-trapezoidal 
time-stepping algorithm and a third-order Adams-Basforth scheme respectively. It is interesting 
to notice that both the square wave and the semicircle are better resolved in the first case; 
however, the terracing effect is not completely eliminated (Figure 7(a)) and it is certainly more 
pronounced than in any of the spectral solutions (Figures 6(aw(c)). The situation is completely 
different in Figure 7(b), where the square wave profile is not as sharp as in Figure 7(a) but the 
terracing effect is completely eliminated. Several other experiments we performed using a high- 
order finite difference discretization and a third-order Adams-Bashforth time-stepping scheme in 
advancing both low-order and high-order components of the FCT algorithm gave similar 
terracing-free results. This is a new finding and leads to the conclusion that non-dispersive 
high-order time-stepping schemes can completely eliminate the formation of unphysical plateaux 
in smoothly varying solutions. Unfortunately, the smearing of jump discontinuities is unavoid- 
able with the Adams scheme, as is demonstrated more clearly in Figures 7(c) and 7(d), where we 
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Figure 7. Eighth-order finite difference-FCT solution of the linearly advected combined wave-form (same example as in 
Figure 6): (a) leapfrog-trapezoidal, 12 000 time steps; (b) Adams-Bashforth third-order, 12 O00 time steps; (c) leap- 
frog-trapezoidal, 52000 time steps; (d) Adams-Bashforth third-order, 52 OOO time steps. The time step is Ar = for all 

cases 

plot the solution corresponding to Figures 7(a) and (7d) after 52 OOO time steps. These preliminary 
results suggest that an ideal time discretization scheme for the problems we examine here will 
consist of a hybrid or adaptive algorithm that is constructed from both the leapfrog as well as the 
Adams scheme, which are activated in regions with strong discontinuities and smooth variations 
respectively. 

6.2. Inviscid Burgers equation 

In this subsection we present solutions of the inviscid Burgers equation from three experiments 
corresponding to different initial conditions. First we consider the evolution of an initially 
continuous (parabolic) profile. The profile is steepened after some time and a shock is formed. 
A similar case was treated in Reference 11 using a Fourier-FCT formulation similar to the one 
presented in Section 2. The main result of that simulation (which we verified in our work) is that 
oscillations may develop in the back side of the shock which can be removed by using 
a high-order filter. Here we are employing the spectral element-FCT formulation to simulate the 
same case. First a spectral ( K =  1 element) solution is presented through a series of plots in 
Figures 8(ak8(d). The accuracy obtained is comparable to the Fourier-FCT solution with 
a similar type of odd-even oscillations present in the back side of the shock. On increasing the 
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Figure 8. Spectral (Chebyshev) solution of the inviscid Burgers equation using N = 128 and At= 3.9063 x (a) initial 
condition; (b) solution after 200 time steps; (c) solution after 1000 time steps; (d) solution after 2000 time steps 

number of elements, however, the accuracy of the solution is improved significantly in terms of 
resolving the discontinuity more accurately as well as removing the aforementioned oscillations 
without the use of a filter. The solution for a particular discretization ( K  = 8, N = 16) is presented 
in Figures 9(a)-9(d). This type of behaviour is typical for all other spectral element discretizations 
we tested; oscillations tend to form only for the fewer-element cases. 

As a second test case we consider an initial condition corresponding to multiple jump 
discontinuities as shown in Figure 10(a). The discretization employed corresponds to K =  10 
elements of 20 Gauss-Lobatto points each, while the time step used is At = The solution is 
plotted in Figure 10 at times (b) t=0.6, (c) t= 1.2, (d) t = 143, (e) t =2.4 and ( f )  t = 3.0. The solid 
line correspond to the exact solution and the symbols correspond to the spectral element-FCT 
solution. There are several features to be noticed in this solution. As far as the shocks are 
concerned, we observe correct speeds, no overshoots or undershoots and very accurate coales- 
cence. Similarly, the expansion is simulated correctly, free of oscillations or terracing as well as 
free of overshoots or undershoots at the two corners. To examine the effect of resolution using 
a coarser mesh, we simulate the same solution using K = 10 elements of 11 Gauss-Lobatto points 
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(c) (a 
Figure 9. Spectral element solution of the inviscid Burgers equation using K = 8, N = 16 and At = 3.9063 x lo-': (a) initial 

condition; (b) solution after 200 time steps; (c) solution after 1000 time steps; (d) solution after 2000 time steps 

each. The obtained solution is shown in Figures 1 l(aF1 l(f), where again all features of the exact 
solution are very accurately represented. 

As a last example we consider the solution of the inviscid Burgers equation corresponding to 
the initial condition u(x, 0)=0.3 +0+7 sin(nx). In contrast to the previous solutions, this initial 
condition leads to both left- and right-travelling waves. The matching of the solution at 
elemental interfaces is upwind, with the appropriate sign determined by a simple Roe averaging 
procedureI6 of reconstructed boundary values. Unlike the previous examples, here we apply the 
limiter only in the elements around the shock (see Section 7). The time step used in this simulation 
is At = 2 x In Figure 12 we plot the solution after a shock has formed at time t = 3.0; this 
solution is obtained using K = 15 elements of eight Gauss-Lobatto points each. As shown in the 
figure, the solution is free of spurious oscillations and the (one-point) shock has the correct speed. 

7. DISCUSSION 

In this work we have formulated an algorithm based on spectral element discretizations and 
flux-corrected transport (FCT) concepts. The results presented justify the need for using high- 
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Figure 10. Spectral element solution of the inviscid Burgers equation using K=10 ,  N = 2 0  and At= (a) initial 
condition; (b) solution at t=O6; (c) t=1.2; (d) t=1%; (e) t=2.4; (f) t=3.0 

order schemes to improve the quality of solutions obtained via FCT techniques, in agreement 
with previous recommendations." We have made no special attempt to devise a flux limiter 
consistent with non-uniform spectral discretizations; however, we found that the simple limiter of 
Boris and Book6 is effective in correcting overshoots or undershoots that may develop during the 
time evolution of the solution. The question which has never been addressed in any of the 
previous investigations is if a spectral accuracy can be recovered (in the smooth regions of the 
solution) employing spectral schemes that use FCT ideas. The answer is unfortunately not 
a simple one and is ultimately related to the effectiveness of the flux limiter. In a smooth region, 
for example, where the limiter need not be activated (Ci = 1 in equation (20)), only the high-order 
(spectral) discretization is employed (see Section 5 )  and thus high accuracy is expected in that part 
of the domain. In our experiments, however, we found that for smoothly varying functions (e.g. 
a semicircle) the limiter employed here is also activated (Ci < 1) in the smooth region, while in the 
square wave experiment the limiter is activated only around the two points of discontinuities. The 
situation is similar with the inviscid Burgers equation. To recover exponential convergence, 
however, away from the discontinuity we apply the flux limiter adaptiuely on those spectral 
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Figure 11 .  Spectral element solution of the inviscid Burgers equation using K=10, N = l l  and At=10-3:  (a) initial 
condition; (b) solution at t=0.6; (c) t =  1.2; (d) t= 1.8; (e) t=2.4; (f) t=3.0 

elements only in which the corresponding spectral expansions converge at a very slow rate, i.e. the 
element where the shock is located and the two elements adjacent to it. This idea was imple- 
mented for the solution of Figure 12 and the pointwise error of the solution at time t = 3.0 is 
plotted in Figure 13 for two discretizations corresponding to K = 15 and N =  4 and 8. We see that 
indeed as we double the local resolution, keeping the number of elements constant, the error 
decreases by two orders of magnitude away from the shock, suggestive of spectral-type conver- 
gence. Recent progress in developing one-sided filters makes it possible to also recover high 
accuracy in the region around the shock." Similar results and spectral convergence have been 
obtained recently using a non-oscillatory reconstruction and spectral element discretization. 

The approach of partial adaptive limiting implemented here is essential in recovering spectral 
convergence in smooth regions. It is quite general and can easily be extended to multishock 
solutions and systems of hyperbolic laws. There are other issues associated with computational 
cost and time step restrictions which are typical in spectral-type methods. Here we have only 
addressed the approximation properties of the new algorithm and demonstrated how the method 
can potentially be competitive with currently used finite difference techniques by requiring much 



" " 1 ' " " ' I " '  

- 

-1 0 1 N = 8  

-1 

Figure 13. 

- - 

l , , , i , , , l , , < i , t ~  

- 1 5 " '  ' ' ' ' ' I ' ' ' ' 
0 2 4 6 8 10 

Pointwise logarithmic error of reconstructed values for the solution of Figure 12 for K = 15 
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less resolution of points (see examples of the Burgers equation). Work in progress addressed the 
time step restriction by implementing recently developed techniques2’* 21 or resorting to implicit 
time advancement. We are currently investigating these issues and we will report results in 
a future publication. 
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